Al Literacy Development for Software Engineering
Education: Mapping Al from the SWEBOK to the
SAIL Framework

David Parsons
The Mind Lab
academyEX
Auckland, New Zealand
https://orcid.org/0000-0002-9815-036X

Abstract—Artificial Intelligence (AI) is becoming a
fundamental component of software engineering, both in terms
of using Al applications in software engineering (Al for SE) and
using software engineering to develop Al systems (SE for Al).
The SWEBOK highlights relevant AI knowledge areas, but in
practice, Al impacts all aspects of software engineering. As a
result, software engineering education needs to take account not
only of a set of knowledge areas but also a foundational set of AI
literacies that inform students about the wider and deeper
implications of AI systems. This article addresses this challenge
by mapping knowledge areas from the SWEBOK to the
Scaffolded Al Literacy (SAIL) Framework. Using some example
mappings from knowledge areas to Al literacies, followed by
illustrative examples of teaching scenarios, it explores how SE
knowledge areas can be supported and enhanced by developing
Al literacies.

Keywords—Artificial Intelligence literacy, SWEBOK, SAIL
framework, software engineering education, learning activities

L SOFTWARE ENGINEERING EDUCATION AND Al
LITERACY

With the increasing development of Al systems, and the
widespread use of Al tools in the development of software,
software engineering education must adapt to this significant
change in the industry by integrating relevant coverage of Al
into the curriculum [1]. Software engineering students need to
develop an understanding not only of how to use Al tools
within the software engineering process, but also how to apply
these tools critically, appropriately, and with an awareness of
both the opportunities and the risks of relying on Al
technology. Further, it is increasingly likely that software
engineering students will find themselves orienting towards
future careers that demand a deep understanding of how Al
systems are architected, developed, and evolved.

A. Al Automation in Software Engineering

As software engineers increasingly use Al tools to assist
them in the software engineering process, some areas of
activity may become fully automated while others will
continue to require some human perception [2]. Areas less
likely to see full automation are software requirements,
design, and construction. In contrast, software testing and
maintenance, software engineering management and process,
models and methods of software engineering, and software
quality, have all been suggested as candidates for full
automation, alongside software configuration management,
which is already a highly automated task.

DOI reference number: 10.18293/SEKE2025-011

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

These moves towards Al automation of the software
development process have implications for the development
skill sets required for software engineers across the industry.

Where software engineers work in the construction of
systems that incorporate Al or machine learning, a wide range
of challenges have been reported that are related to areas of
development such as testing, software quality, data
management, model development, project management, and
requirements engineering, among many others [3]. Among the
suggested software engineering practices that can help address
these challenges are guidelines, lessons learned, and tools. In
the category of guidelines, a combination of the SWEBOK
and an Al literacy framework can provide a useful resource.

B. Al for SE and SE for Al

The two aspects of software engineering and Al (using Al
and creating Al) are recognised in the Guide to the Software
Engineering Body of Knowledge (SWEBOK) as Al
applications in software engineering (Al for SE) where Al is
used to help build software systems by taking over some
development tasks across multiple development stages, and
software engineering for Al systems (SE for AI), where
developers learn the behaviours of Al systems and the role of
training data [4].

In the context of SE for AI, the SWEBOK highlights the
need for interdisciplinary collaborative teams of data scientists
and software engineers, skills in evolving software that uses
large and changing datasets, relevant software design patterns,
and ethics and equity considerations, a broad skillset that goes
beyond tools and technologies to embrace broader literacies.
This is in a context where the methodologies, tools and
practices of Al Software Engineering are still developing and
much less mature than those of traditional software
engineering [5].

C. Al Literacy to support Software Engineering Education

Given these significant changes to the role of the software
engineer, students in the field will need to develop not just new
knowledge but new Al literacies. These literacies include
understanding Al concepts and developing technical skills
with Al tools, as well as developing cognitive skills and Al
digital citizenship, with a critical awareness of ethical
considerations and the responsible use of Al technologies.

To support the goals of the SWEBOK in helping students
develop their knowledge and skills in Al in software
engineering, this article applies the Scaffolded Al Literacy
(SAIL) framework [6] to provide a guiding structure for Al
literacy in software engineering education. All the
competencies referred to in the examples in this article are
drawn from this framework.

SAIL is not the first Al literacy framework to be discussed
in the context of technology education, but previous examples
have been focused in specific knowledge areas, directed at
school students, and/or lack detailed competencies that
support scaffolded development [7]. The SAIL framework
was developed from a Delphi Study of experts in 2024 and is
designed to support all learners across multiple domains and
levels of study. This division into multiple layers makes it
relatively unusual among Al literacy frameworks, and its
consideration of what comes beyond literacy, in the expert
realm, males it uniquely relevant to discussing Al capabilities
at the graduate level. Although the framework is designed to
be generally applied across all learning domains, its focus at
the higher levels on the knowledge, skills, and understanding
that are needed to work in depth with Al technologies makes
it an appropriate vehicle for supporting the examples explored
in this article, which address scaffolded AI literacy
development in software engineering education.

The remainder of this paper is structured as follows. First,
it reviews the current coverage of artificial intelligence in the
SWEBOK. It then briefly introduces the four levels of the
SAIL framework, suggesting target competencies for software
engineering students and graduates. This is followed by two
examples of applying different levels of the framework to
knowledge areas of the SWEBOK. In each case, there is some
discussion of how this alignment with Al literacies might
deepen and help contextualise the technical knowledge that
students will be addressing from the SWEBOK. This is
followed by two examples of how learning activities might be
designed to integrate both the knowledge defined in the
SWEBOK and the broader Al literacies that are relevant to
that knowledge. The paper concludes with some reflections on
how this approach might be further developed by educators in
the software engineering domain.

II. AIINTHE SWEBOK

Currently, coverage of Al in the SWEBOK appears mostly
in the section on “Artificial Intelligence and Machine
Learning” (Chapter 16, Computing Foundations, Section 9).
Some other relevant material appears in “Testing of and
Testing Through Emerging Technologies” (Chapter 35,
Software Testing, Section 7), relating to the role of Al,
machine learning and deep learning in testing. Coverage of
“domain-specific software security” (Chapter 13, “Software
Security”, section 6.3) includes a brief entry on security for
machine learning-based applications, while “computational
neurosciences” (Chapter 17, Mathematical Foundations,
section 13.1), refers to neural networks, highlighting
technological advances that include Al. Finally, the section on
“Industry 4.0 and Software Engineering” (Chapter 18,
Engineering Foundations, section 10) highlights changes to
custom manufacturing and integration with other systems,
supported by Al.

This is not to say that Al is not already being applied much
more broadly across the SWEBOK knowledge areas, but
rather that AI is not explicitly highlighted across every
knowledge area to which it might apply. It is not the intention
of this article to critique the coverage of artificial intelligence
in the SWEBOK nor to consider what other aspects of Al
might potentially appear in its coverage. Rather, it aims to take
some example knowledge items specifically linked to Al in
the SWEBOK and map them to related Al literacies from the
SAIL framework. The intent of this mapping is to demonstrate
to educators how they could ensure that software engineering

students are not only gaining technical competencies in the use
of Al but also developing broader literacies that will help them
to contextualise and critique their own work from multiple
perspectives, ultimately leading to better software engineering
practice in the field of AL

1. THE SCAFFOLDED AI LITERACY (SAIL) FRAMEWORK

The Scaffolded Al Literacy (SAIL) framework has four
levels, which are not age- and stage-based but rather provide
a pathway of learning. For software engineering students in
higher education, we might expect to see outcomes at
graduation at levels 3 and 4+ of the framework (Fig. 1).

Level 4+ - Beyond Al Literacy
This last layer signals the move between Al
literacy and expertise expected at an
advanced level. This level focuses mare on
the extended literacies appropriate to those
specialising in Al systems. It requires a
more in-depth understanding of Al,
sufficient to develop and train Al systems.

Level 3 - Evaluate and Create Al
Engaging in higher-order thinking activities
and starting to develop Al applications
through scaffolded tools. The focus is on
critically evaluating Al technologies and
exploring how design decisions influence the
functions and impacts of these systems.

Fig. 1. Levels 3 and 4+ of the SAIL framework

In level 3 - “evaluate and create AI” - students are engaging
in higher-order thinking activities and starting to develop Al
applications through scaffolded tools. The focus is on
critically evaluating AI technologies and exploring how
design decisions influence the functions and impacts of these
systems and is the highest level of Al literacy that might be
expected of a software engineering generalist. In higher
education, this level might usefully be a benchmark that all
software engineering students would be expected to have met
by the end of their course of study. Level 4+ of the framework
is ‘beyond Al Literacy’, signalling the move from Al literacy
to the expertise expected at an advanced level. This level
focuses on the highest level of study and requires an in-depth
understanding of Al, developing and training Al systems.
Level 4+ defines the extended literacies expected from a
software engineering graduate with some specialisation in Al

Aligning these two levels to software engineering
graduates is based on the following assumptions:

1. Students completing higher education in software
engineering need a fully developed set of Al
literacies. Therefore, all software engineering
graduates should be able to demonstrate competence
at level 3 of the framework, which is presented as the
highest level of Al literacy.

2. Students who wish to specialise in Al-related
software engineering will need professional
competencies appropriate to their level of
specialisation. Level 4+, which goes beyond literacy
into specialist skill sets, is proposed as being essential
for these students.

If levels 3 or 4+ are expected of graduates, levels 1 and 2
(Fig. 2) also have a role to play in the learning journeys of
software engineering students.

Level 1 - Know and Understand Al
Acquiring fundamental concepts, skills,
knowledge and attitudes that require no prior
experience. The focus is on supporting
learners in understanding the technologies
underneath Al systems to be competent end
users. Al is addressed in a general sense and
its adoption is explored across different
contexts to provide a broad understanding.

Level 2 - Use and Apply Al
Addressing technical aspects of Al, such as
the design of logic and algorithms, and
understanding how to use knowledge
bases for problem-solving, processing
semantics, and handling data. The focus is
on specific contexts that can be explored in
detail with hands-on use of Al productivity
tools to build applications.

Fig. 2. Levels 1 and 2 of the SAIL framework

Given that the SAIL framework is based on scaffolding
learning through all four levels, levels 1 (‘know and
understand AI’) and 2 (‘use and apply AI’) provide the
foundation for the expected graduate levels, so students in
their early years of study should be given the opportunity to
explore and demonstrate their capabilities at these levels.

A. SAIL framework domains and categories

The framework has six categories of Al literacy, grouped
into three domains: “Al concepts”, “Application of Al and
Technical Skills”, and “Al Digital Citizenship”. The six
categories together ensure an appropriate mix of knowledge,
skills, and critical thinking. Fig. 3 shows the domains and
categories, with brief descriptions of each.

Al Concepts

Understanding the nature of Al and how it
impacts on people in their everyday lives

@ The Impacts of Al What Al Is and How It Works

g Al fundamentals by defining key terms,
comparing technologies, understanding data use.
explaining human language interaction, and explarini
advanced concepts like deep leaming and quantum
computing.

Exploring Al's societal impacts by identifying human-
Al interactions, understanding ethical use, assessing
Al adoption and potential harms. and demonstrating
data literacy and interdisciplinary applications.

Application of Al
and Technical Skills

Knowing how Al tools can be
applied to useful tasks

(%E Cognitive Skills

Developing cognitive skills by assessing Al's
implications. evaluating tool suitability,
understanding its impact on work and
creativity, and demonstrating computational
thinking and Al model-building expertise

@" Applied Skills

Enhancing applied skills by selecting and using
appropriate Al tools to collaborate, communicate,
solve problems, and perform tasks in specific
contexts such as leaming and research

Al Digital Citizenship

Being aware of the issues and risks
associated with Al and their mitigations

B Social, Cultural, & Ethical Issues % Risks & Mitigations
Exploring social, cultural. and ethical issues of Al by di the ges of Al by and
assessing societal benefits, g ethical risks, p use,

implications, discussing cultural impacts, and ensuring inclusivity, and applying moral
frameworks to assess Al's societal value and future

directions

applying principles-based approaches to equity.
inclusivity, and policy development

Fig. 3. Domains and categories of the SAIL framework

The following sections of this paper explore some
knowledge areas of the SWEBOK that address aspects of Al
and align them to relevant competencies from the different
levels of the framework, as illustrative examples of how Al
literacies can support knowledge areas. These are followed by
some example learning activities that would be appropriate for
software engineering students to develop a range of
competencies in Al literacy and beyond.

IV. MAPPING KNOWLEDGE AREAS OF THE SWEBOK TO
AI LITERACIES

This section illustrates how knowledge areas from the
SWEBOK might be mapped to relevant Al literacies. The
method for creating these mappings was to first identify all
parts of the SWEBOK that explicitly address Al (as briefly
discussed in section II). Each of these sections was then
examined, and relevant AI literacies from the SAIL
framework were identified. Relevant literacies were those that
could be explicitly developed in students while they were
addressing these knowledge areas. The purpose of the
mapping exercise was to demonstrate how the development of
key Al literacies can be surfaced to ensure that technical skills

are contextualised into a broader context of developing Al
literacy.

This article illustrates this process through two examples.
The first example shows how the knowledge area of “Al and
Software Engineering” can be mapped to Al literacies at levels
3 and 4+ of the framework, while the second example shows
how the knowledge area of “Security in ML Applications” can
be mapped to levels 1 and 2. These are, of course, just
illustrative examples from the broad range of potential
mappings that might be considered.

A. Example 1 - AI within the Development Lifecycle

The first example addresses SWEBOK chapter 16, section
9.6, “Al and Software Engineering”, which notes that using
emerging technologies such as artificial intelligence and
machine learning to leverage complex software tools within
the development lifecycle adds another dimension to the body
of knowledge, whereby Al-based systems may require the
development and application of new approaches to the
lifecycle.

While the SWEBOK brings an awareness of these issues,
exploring related Al literacies can flesh out these concepts into
specific competencies. Further, these are not restricted to
technical skills but encompass cognitive skills and Al digital
citizenship.

As an example, several Al literacy competencies can
support an understanding of the changes that Al brings to the
software development lifecycle. For level 3 of the framework
(which would be expected of all software engineering students
regardless of their area of specialisation), in the domain of
“Application of Al & Technical Skills”, cognitive skills that
could apply would include:

e Determine the usefulness of a given Al technology to
meet a requirement or perform a task.

Additionally, if model building is involved:

e Understand the steps involved in Al model building,
including training, testing, validation, and
deployment.

Relevant applied skills could include:

e Evaluate, select, and implement creative approaches
to the application of Al across contexts.

e Develop Al projects using appropriate tools scripts,
and libraries.

Further, from the domain of “Al Digital Citizenship”, the
following competency could be considered:

e Evaluate ethical issues related to the design and
implementation of AI models and systems (e.g.,
honesty, intellectual property, and potential harm).

In the category of risks and mitigations, the following also
applies:

e Explain strategies for ensuring the accuracy and
reliability of Al products.

At level 4+, the components of the framework go beyond
Al literacy and apply to those software engineering students
who have focus on engineering Al or related systems. For
them, the following cognitive skill applies:

e Identify value in successful Al applications, plan and
map end-to-end processes from data acquisition to
model construction, evaluation, implementation, and
life cycle management.

In applied skills, relevant competencies would be:

e Develop Al applications that serve specific purposes
in practical settings, leveraging advanced
programming and Al techniques.

e Manage projects and collaborate effectively with
other groups, leveraging relevant coding and software
knowledge to implement ideas.

In the social, cultural, and ethical issues of “Al Digital
Citizenship” we should consider:

e Apply ethical considerations to Al projects, such as
transparency, explainability, and fairness

and, in risks and mitigations:

e Demonstrate the development and implementation of
inclusive Al systems that respect diverse social and
cultural contexts.

From this first example, it is possible to see that extending
knowledge items from the SWEBOK by matching them with
levels of Al literacy increases both the depth and breadth of
the topic learning outcomes and contextualises them within
the broader concerns of industry and society.

B. Example 2 - Security in Machine Learning Applications

The second example relates to the SWEBOK chapter 13,
section 6.3 “Security in Machine Learning-Based
Application”, which covers Al-specific threats like model
poisoning, evasion attacks, and the need for security-aware
development. In this example the SWEBOK only provides a
brief note, but exploring related Al literacies can build on this
to provide opportunities for wider learning and discussion.

The previous example took a detailed section of the
SWEBOK and mapped it to levels 3 and 4+ of the framework.
In contrast, this example explores how a shorter item from the
SWEBOK could be linked to levels 1 and 2 of the framework
to provide a shared common understanding about the key
issues for all students embarking on their software engineering
studies. To expand on the ideas in the SWEBOK, students
could investigate how data inputs affect model behaviour, for
example by modifying input samples and observing changes
in predictions. They might also discuss the real-world impacts
of Al security breaches in contexts such as facial recognition,
credit scoring, or autonomous vehicles.

For level 1 of the framework - Know and Understand Al -
(which is intended to apply to everyone, regardless of their
age, stage, and focus of study) the levels of knowledge would
be introductory and address the following literacies.

In the domain of “Al Concepts”, knowledge of what Al is
and how it works that could be developed would include:

e Explain how data is used in different Al systems.

In the domain of “Application of Al & Technical Skills”,
relevant cognitive skills could include:

e Evaluate the role of data within Al systems and the
implications that data has on the training of Al
models.

Further, from the domain of “Al Digital Citizenship”, the
following competencies relating to social, cultural and ethical
issues could be considered:

e Identify the ethical implications of Al (e.g., bias,
fairness, transparency, accessibility, accountability).

While in the category of risks and mitigations, the
following also applies:

e Identify risks presented by Al systems (e.g., security,
personal data, privacy, fraud, cyber threats).

At level 2 - Use and Apply Al - Al concepts relating to
knowledge of what Al is and how it works relevant to this
aspect of the SWEBOK include:

e Apply key terms to explain how Al models are trained
and the different steps involved.

e Explain how data is used in Al systems and identify
different sources of data used to train various Al
models.

In applied skills, a relevant competency would be:

e Explain the different machine learning approaches
that can be used (e.g., unsupervised, supervised and
reinforcement learning), the role of data in these
approaches, and their application to real-world
problems.

In “AI Digital Citizenship”, social, cultural, and ethical
issues, we should consider:

e Understand how bias occurs in Al systems
and, in risks and mitigations:

e Assess the risks associated with data use in Al systems,
including issues related to data collection, accuracy,
relevance, storage, security, privacy, and potential
misuse.

This second example indicates that even a brief reference
in the SWEBOK can be expanded out using a set of related Al
literacies to engage students in foundational learning activities
that can underpin their subsequent advanced learning about Al
in software engineering.

V. EXAMPLE LEARNING ACTIVITIES

Mapping knowledge areas to literacies provides an overall
vision for how these two components of learning may be
related, but on its own is purely theoretical. To put these ideas
into practice, it is necessary to embed them into learning
activities. Therefore, this section outlines two examples of
learning activities that could help students to develop both
their understanding of knowledge areas related to Al from the
SWEBOK and their Al literacy at various levels.

A. Example Learning Activity 1 - Computing Foundations
and Level 3 of SAIL

This learning activity could be suitable for software
engineering undergraduates to help them learn how Al is
being applied within software engineering, as described in the
“Computing Foundations™ knowledge area of the SWEBOK
addressing Al for SE, related to competencies at level 3 of the
SAIL framework (“Evaluate and Create AI”).

The activity focuses on how Al can assist in the code
review process, which is a key aspect of ensuring software

quality. It involves students simulating the functionality of an
Al-supported code review tool, using a simple machine
learning platform to highlight the potential of Al in areas like
assessing code quality and vulnerability detection.

For this activity, students can be provided with examples
of "good" and "bad" code snippets focused on a specific type
of vulnerability or style violations. A common, simple
example would be the programming style rule that braces
should be used with every ‘if* statement, regardless of the
number of statements within the block [8]. The number of
examples should be sufficient to create a classifier. In the
activity, students can use a machine learning tool to train a
simple model to classify these code examples. Once this
model is trained, students can use it to categorise other code
examples they create themselves. Depending on the context
and the learning goals, students might create their classifiers
by coding, for example, by using a Python text classifier
library, or for a simpler activity, they could use Google’s
Teachable Machine image classifier [9] by training the model
with images of code samples. While the latter would not be a
very realistic tool to use in practice, it offers a quick and
simple way to explore the underlying machine learning
aspects of creating a code quality classifier. It could also be a
first step in an activity to create a more practical classifier
using code.

This activity will help students develop competencies
within the cognitive skills category at level 3 of the SAIL
framework by enabling them to

e Determine the usefulness of a given Al technology to meet
a requirement or perform a task.

and, in the applied skills category, to:

e Explain how data sets and training sets are transformed
into Al models.

e Develop Al projects using appropriate tools, scripts, and
libraries.

Even if using a pre-built tool or a simplified simulation via
a platform like Teachable Machine, students will be
interacting with, and potentially training (in a simplified
manner), an Al model for a specific software engineering
purpose.

In the category of risks and mitigations, this activity can
help students to:

e Explain strategies for ensuring the accuracy and
reliability of Al products.

e Consider the impact of bias in training data and the
importance of diverse and inclusive datasets.

By observing the suggestions or feedback provided by
their classifiers, students can explore how training data sets
may have biases. For example, a style guide model trained on
a limited data set might flag some code as non-compliant even
if it meets the criteria in the style guide.

More broadly, in the category of what Al is and how it
works, students will have the opportunity to:

e Demonstrate an understanding of how Al systems
decompose complex problems, how algorithms are
developed, and how large datasets are used to train
Al models.

By bringing topic learning outcomes such as these, based
on Al literacy, into a learning activity, the potential benefits
of the learning experience are enhanced.

B. Example Learning Activity 2 — Software Testing and
Level 4+ of SAIL

This second learning activity could be suitable for
software engineering undergraduates specialising in Al to
help them explore how Al can be applied within software
testing, as described in the “Software Testing” knowledge area
of the SWEBOK, addressing Al in SE, related to
competencies at level 4+ of the SAIL framework (Beyond Al
Literacy). In this learning activity, students would investigate
and prototype the use of Al and machine learning for software
testing.

Students could begin by working in groups to select a
specific area of software testing where Al techniques can be
applied, and then investigate, design, and create a basic
prototype or proof-of-concept demonstrating this application.
Some possible focus areas could include test case generation
(how AI can be used to automatically generate test cases),
addressing the test oracle problem (how Al can assist in
predicting expected outputs for test cases), evaluation and
prioritisation of test cases (how Al can prioritise test cases
based on factors like historical data, code changes, or
predicted fault likelihood) and bug classification (how Al can
analyse bug reports to classify and prioritise them). Students
could then review the literature in their chosen area to identify
the specific Al techniques that can be used, the benefits and
challenges of applying these in software testing, and the data
requirements for training and deploying the relevant models.

Having explored the theory, students could then design
and implement a basic prototype or proof-of-concept that
demonstrates the application of the chosen technique to a
simplified software testing scenario. This might involve using
existing libraries or platforms, working with a sample dataset,
and developing a simplified model or algorithm to perform a
relevant testing-related task. They could then evaluate the
performance of their prototypes and reflect on the
effectiveness of the chosen technique for their specific testing
problem, any limitations and potential improvements for their
prototype, and the challenges encountered in applying Al for
this purpose

This learning activity gives students an opportunity to
actively engage in evaluating and creating Al applications in
the context of software testing.

Relating to Al literacy, in the category of what Al is and
how it works, students will have the opportunity to:

e Demonstrate the ability to learn new Al concepts,
tools, and techniques independently, recognising the
importance of continual learning in the rapidly
evolving field of AL

It will also help them develop competencies within the
cognitive skills category of the SAIL framework by enabling
them to:

e Identify value in successful Al applications, plan and
map end-to-end processes from data acquisition to
model construction, evaluation, implementation, and
life cycle management.

and, in the applied skills category, to

e Create Al case studies or projects with measures or
hypotheses, recording and analysing the results, and
reporting on the findings.

Potentially, depending on how the group work is
organised, they might also explore how to:

e Manage projects and collaborate effectively with
other groups, leveraging relevant coding and
software knowledge to implement ideas.

In the category of risks and mitigations, this activity can
help students to begin to:

e Identify and evaluate potential risks associated with
Al implementation, including machine-human
interaction, intellectual property protection, societal
impacts, and misuse of Al.

Although the testing context would not reach deeply into
all these aspects, developing an awareness of the potential
risks of using Al in the testing context would be an important
learning outcome.

It may be noted that both the suggested learning activities
discussed above rely to various extents on the creation of data
sets. This is a consequence of seeking to provide relatively
simple task scenario that provide a straightforward set of
options for developing Al literacies. Many alternative learning
tasks that develop Al literacies can also be suggested that do
not require data sets to be created.

VI. SUMMARY AND CONCLUSIONS

This article has outlined some ideas for how Al literacy,
as expressed in the SAIL framework, can be integrated into
software engineering education to enhance graduate skills and
awareness in the two broad conceptual aspects of the
SWEBOK relating to Al, Al applications in software
engineering (Al for SE) and software engineering for Al
systems (SE for AI). By mapping knowledge areas from the
SWEBOK to Al literacies, the article has suggested how these
literacies can provide broader context and understanding to
knowledge areas. By providing illustrative examples of
learning activities that link knowledge areas to literacies, it
suggests how these links can be practically implemented in
education.

The full SAIL framework includes 99 Al literacy
competencies. The various examples in the article have
touched on about one third of these. It is suggested that course
delivery in Software Engineering education should take

account of the full set of Al literacies to give students the
opportunity to develop a comprehensive range of
competencies as part of their broader learning about the
software engineering body of knowledge. Educators in the
software engineering discipline may find it useful to explore
the elements of the SAIL framework to identify which Al
literacies might be particularly relevant for students in their
knowledge domain and professional context.

REFERENCES

[1] C.K. Sah, L. Xiaoli, M.M. Islam, and M.K. Islam, Navigating the Al
Frontier: A Critical Literature Review on Integrating Artificial
Intelligence into Software Engineering Education.”” In 2024 36th
International Conference on Software Engineering Education and
Training (CSEE&T) (pp. 1-5). IEEE.

[2] O. Borges, V. Lenarduzzi, and R. Prikladnicki, “Preliminary insights
to enable automation of the software development process in software
StartUps,” In Proceedings of the 1st International Conference on Al
Engineering: Software Engineering for AI CAIN’22: 1st Conference
on Al Engineering: Software Engineering for AI (Vol. 10, No.
3522664.3528610). 2022.

[3] E.Nascimento, A. Nguyen-Duc, I. Sundbg, I, and T. Conte, “Software
engineering for artificial intelligence and machine learning software: A
systematic literature review”. arXiv preprint arXiv:2011.03751.
https://arxiv.org/abs/2011.03751. 2020.

[4] H. Washizaki, H. (Ed.), “Guide to the Software Engineering Body of

Knowledge v4.0”. IEEE, 2024.
https://www.computer.org/education/bodies-of-knowledge/software-
engineering/

[5] M. Bublin, S. Schefer-Wenzl, and I. Miladinovi¢, “Educating AI
software engineers: Challenges and opportunities. In International
Conference on Interactive Collaborative Learning. 2021 (pp. 241-251).
Springer International Publishing.

[6] K. MacCallum, D. Parsons, and M. Mohaghegh, (2024). “The
Scaffolded Al Literacy (SAIL) Framework for Education: Preparing
learners at all levels to engage constructively with Artificial
Intelligence”, He Rourou, vol. 1, 23. 2024.
https://doi.org/10.54474/herourou.v1il.10835

[71 K. Stolpe, and J. Hallstrom, J, “Artificial intelligence literacy for
technology education”. Computers and Education Open, vol. 6,
100159. 2024. https://doi.org/10.1016/j.cac0.2024.100159

[8] C. Yang, Y. Liu, and E.J. Yu, “Exploring violations of programming
styles: Insights from open source projects”. Proceedings of the 2018
2nd International Conference on Computer Science and Artificial
Intelligence, 2018, p185-189. 10.1145/3297156.3297227

[91 M. Carney, B. Webster, I. Alvarado, K. Phillips, N. Howell, J. Griffith,
J. Jongejan, A. Pitaru, and A. Chen, “Teachable Machine:
Approachable Web-Based Tool for Exploring Machine Learning
Classification”. In Extended Abstracts of the 2020 CHI Conference on
Human Factors in Computing Systems (CHI EA '20). ACM, 2020.
pp.1-8. https://doi.org/10.1145/3334480.3382839

